Magnetic Impurity Doping Studies of the Cooper Pair Insulator State

Xue Zhang, James Joy, Chunshu Wu, Jin Ho Kim, Jimmy Xu

Road Map

- Cooper Pair Insulator phase
- Dope with magnetic impurities?
- Quench Condensed a-Bi films
- 2 studies of doping effects
 - Effects on Localization
 - (Mott insulator with virtual qp screening)
 - Effects on Giant Magnetoresistance Peak
 - (low field dephasing and high field pairbreaking)

Cooper Pair Insulator Phase

Near SIT

Cooper Pair transport – MR oscillations

Giant MR Peak

Hard gap in qp DoS

How do magnetic impurities affect...

Superconductor? "pairbreaking"- α reduce Δ , T_c

Cooper Pair Insulator? "pairbreaking" - α

How do magnetic impurities affect...

Superconductor? "pairbreaking"- α reduce Δ , T_c

Cooper Pair Insulator? "pairbreaking" - α reduce Δ , E_1 , or t

How do magnetic impurities affect...

Superconductor?

"pairbreaking" - α_{imp} reduce Δ , T_c

Cooper Pair Insulator?

"pairbreaking" - α_{imp} reduce Δ , E_1 , or t

If

$$H = E_c \sum_i n_i^2 + E_J \sum_{i,j} \cos(\theta_i - \theta_j)$$

with
$$T_0 = E_c \left(1 - \alpha \frac{E_J}{E_c} \right)$$

then doping leads to $T_0 \uparrow$

Major Questions

What gives rise to the activation energy?

- Coulomb interactions?
- Mobility edge?

What is the giant MR peak?

Quench Condensed a-Bi Films on porous AAO

Films on AAO have nano-dots

Experiments I and II

Activated Transport

Films I and II on Phase Diagram

Doping and Pairbreaking

Doping Film I

 T_0 decreases at low doping \Rightarrow doping delocalizes

Expected E_I to decrease to cause T₀ to increase...

Need models different from the Quantum Rotor

$$H = \frac{e^2}{2C} \sum_{i} n_i^2 + E_J \sum_{i,j} \cos(\theta_i - \theta_j)$$

or Anderson Localization

But closer to the SIT Doping Film II

Maximum in T_0 emerges closer to the SIT \Rightarrow doping enhances localization

Try a modified model

Start: quantum rotor model with CP screening

$$T_0 = E_c \left(1 - \alpha \frac{E_J}{E_c} \right)$$

Note for films with small Cooper pair puddles

$$E_c = \frac{e^2}{2C} >> \Delta$$

=> capacitance renormalization by virtual qp tunneling*

$$\mathcal{E}_c
ightarrow ilde{\mathcal{E}}_c = rac{2\Delta}{3\pi^2 g} \ln \left(rac{g \mathcal{E}_{c0}}{\Delta}
ight)$$

* Larkin and Ovchinnikov, Ambegaokar, Eckern, Schon, Chakravarty, Kivelson, Zimanyi and Halpering, and Beloborov

Quantum Rotor with QP Screening*

$$T_0 = rac{2\Delta}{3\pi^2 g} \ln \left(rac{gE_{c0}}{\Delta}
ight) - eta g \Delta F(2\pi f)$$

g is interisland conductance, F is a periodic function, β depends on coordination

Renormalized E_c

- depends more on ∆ than geometry
- affected by pairbreaking

^{*}Beloborodov and coworkers RMP (2007), Chakravarty et al. (1987)

Quantum Rotor with QP Screening

$$T_0 = rac{2\Delta}{3\pi^2 g} \ln\left(rac{gE_{c0}}{\Delta}
ight) - eta g\Delta F(2\pi f)$$

Magnetic Impurity Effects on CPI

- Pairbreaking
 - Diminishes localization far from the SIT
 - Enhances localization close to the SIT
- Behavior of T₀ suggests
 - CPI is a Mott insulator
 - E_c depends on Δ
 - Maximum in T₀ implies long range
 Coulomb interactions

Giant MR Peak with Doping

Peak in T₀ that evolves with doping

Peak Shrinks and Shifts to Low B with Doping

Nearly linear decrease of peak quantities

Magnetic Impurity Peak

Gd peak much smaller than magnetic field peak => Orbital interference dominates peak

B > Bpeak

Pairbreaking Together: B and α_{Gd}

Modelling Positive MR

From low to high B:

- "Orbital Effect" or destructive interference in large loops
- "Fraunhofer effect" or destructive interference in single junctions
- 3) "Pairbreaking" reduction of E_J by reducing Δ

100 nm (0.2 T)

Doping the CPI

- Gd impurities change the activation energy
- Response suggests that CPI is a Mott Insulator with a gap that depends on the pair binding
 - Differentiates CPI from other Bose insulators
 - Suggests that a good CPI has a large Δ
 - Model agreement implies that the Coulomb interaction is long ranged in these films
- Giant Positive MR mostly an orbital effect
- Pair breaking alone can create resistance peak