

Entering the Quantum Griffiths Phase of a Disordered Superconductor

Jérôme Lesueur

Physics and Materials Laboratory (LPEM) ESPCI – CNRS – UPMC Paris

PhD & PDF : **A. Jouan** – **G. Singh** - J. Biscaras – S. Hurand Collaborators : N. Bergeal, C. Feuillet-Palma, LPEM (Paris)

A. Rastogi, ITT Kanpur (India)

R. C. Budhani, A. Dogra, NPL Dehli (India)

A. Barthelemy, M. Bibes, J. Villegas, N. Reyren, E Lesne UMR Thales-CNRS (Palaiseau)

M. Grilli, S. Caprara, L. Benfatto, La Sapienza (Rome)

SAPIENZA UNIVERSITÀ DI ROMA

Quantum Phase Transition and fluctuations

Quantum Phase Transition and fluctuations in 2D

Complex phase diagrams

Critical exponents

Large varieties

$$z = 1$$
 $v = 0.66$ $v = 7/4$
 $v = 3/2$ $v = 4/3$ $v = ...$

Non universal exponents

Quantum Phase Transition in oxide interfaces

Point #1

- Role of the mesoscopic disorder ...
 - Intrinsic inhomogeneity builts up
 - Quasi-1D filamentary structure appears

Multiple Quantum Criticalities ?

Point #2

Role of the Griffiths singularities ?

- Rare events matter
- Consequence on the observables

Tunable superconductivity in oxide 2DEG

Quantum phase transition in magnetic field

Quantum phase transition in gate voltage

 v_{c}

8

R₈ (kΩ/D)

2 DEG at oxides interfaces LaXO₃/SrTiO₃ (X=AI or Ti)

Superconductor-insulator transition induced by field effect

Superconductor-insulator transition induced by field effect

S. Caprara et al, Phys Rev B (R) 88, 020504 (2013)

D. Bucheli et al, New J. of Phys. 15, 023014 (2013)

Ioffe-Mezard PRL 2010, Goetz-Benfatto-Castellani PRL 2012

Tunable superconductivity in oxide 2DEG

Quantum phase transition in magnetic field

Quantum phase transition in gate voltage

 v_{c}

8

R₈ (kΩ/D)

Magnetic field driven Quantum Phase Transition

■ Suppression of superconductivity by a perpendicular magnetic field at V_G=80V

Transition from superconducting to weakly localized metallic state

Magnetic field driven Quantum Phase Transition

■ Suppression of superconductivity by a perpendicular magnetic field at V_G=80V

 \Rightarrow Crossing point at B_×: a first signature of a quantum phase transition

Scaling and critical exponents

Universality Class : (2+1)D XY in the clean limit : v = 2/3 (Quantum Phase Fluctuations)

A true quantum Phase Transition ?

Scaling does not work at low temperature !

Scaling at lower temperature

Critical exponents as a function V_G

 \Rightarrow Multiple Critical Behavior (B_x & B_c) associated to different critical exponents

Multiple Quantum Critical Behaviors in 2D SC

Multiple Quantum Critical Behaviors in 2D SC

ARTICLE

DOI: 10.1038/s41467-018-04606-w OPEN

0.1

0

Double quantum criticality in superconducting tin arrays-graphene hybrid

Biscaras et al, Nat Mat (2013)

1

Sun et al, Nat Com (2018)

2

H (kOe)

3

Tunable superconductivity in oxide 2DEG

Quantum phase transition in magnetic field

Quantum phase transition in gate voltage

 v_{c}

8

R₈ (kΩ/D)

Gate voltage driven Quantum Phase Transition

Gate voltage driven Quantum Phase Transition

➡ possible electronic phase separation

Scaling for different magnetic fields

Conventional scaling

Quantum Griffiths Phase

Griffiths Phases

Magnetic systems

Biological systems

SCIENTIFIC REPORTS

OPEN Griffiths phase and long-range correlations in a biologically motivated visual cortex model

rosived: 30 January 2006 M. Girardi-Schappo³, G. S. Bortolotto³, J. J. Gonsalves¹, L. T. Pinto² & M. H. R. Tragtenberg¹

ARTICLE

Received 15 Apr 2013 | Accepted 28 Aug 2013 | Published 3 Oct 2013

DOI: 10.1038/ncomms3521

Griffiths phases and the stretching of criticality in brain networks

Paolo Moretti¹ & Miguel A. Muñoz¹

Superconducting systems

PRL 101, 035701 (2008)

PHYSICAL REVIEW LETTERS

week ending 18 JULY 2008

Infinite Randomness Fixed Point of the Superconductor-Metal Quantum Phase Transition

Adrian Del Maestro, Bernd Rosenow, Markus Müller, and Subir Sachdev

Diverging dynamical exponent

$$z' = \frac{A}{|V_G - V_{GC}(B_i)|^{\psi\nu}} + z_{\infty}.$$

B_i is the magnetic field

 z_{∞} is the "clean" value of z

New scaling function

$$\begin{split} \tilde{R} &= \frac{R_S}{R_C} \quad \text{is a scaling function of} \quad \Delta V \left(\frac{T}{T_0}\right)^{-1/z'\nu} \qquad \Delta V = |V_G - V_G^c(B_i)| \\ \hline \text{New scaling function} \qquad \tilde{\tilde{R}} \left(\left(\frac{\Delta V}{\Delta V_0}\right)^{z'\nu} \frac{1}{T} \right) \\ \hline \text{Rescaling procedure} \qquad \tilde{V}(\Delta V) = \left(\frac{\Delta V}{\Delta V_0}\right)^{z'(\Delta V)\nu} = \left(\frac{\Delta V}{\Delta V_0}\right)^{\frac{A\nu}{(\Delta V/\Delta V_0)^{\nu\psi}} + \nu z_{\infty}} \\ \hline \tilde{V}(\Delta V_0) = \left(\frac{\Delta V_0}{\Delta V_0}\right)^{z'(\Delta V)\nu} = 1 \end{split}$$

$$\ln \tilde{V} = \nu \left(\frac{A}{\left(\frac{\Delta V}{\Delta V_0} \right)^{\nu \psi}} + z_{\infty} \right) \left(\ln \Delta V - \ln \Delta V_0 \right)$$

Rescaling the data

Scaling for different magnetic fields

Entering the Giffiths phase in magnetic field

 $z'_{\pm} = A_{\pm} / \Delta V^{\psi\nu}$ $+ z_{\infty}$

		3
$2 \sim \mathcal{V}$	=	
$\sim \infty r$		2

$\psi = 0.$	5
-------------	---

Other signature of the Griffiths phase ?

Looking for rare events

Resistive transition in a magnetic field

SC contributions revealed under B

Levy statistics of rare events

Effective medium theory

Mixing between normal and superconducting phase

Gaussian distribution of Tc within a normal matrix : W_G , T_{CG} , ΔT_{CG}

Additional Levy distribution of Tc : W_I, T_{CL}, Δ T_{CL} for B \neq 0

Effective medium theory

Relative weights : Levy vs Gauss

Levy (rare events) contribution increases with magnetic field

Effective medium theory

Evolution of Tc with magnetic field : Levy vs Gauss

Tc Gauss decreases but Tc Levy stays constant (roughly the T_{CG}(B=0) value)

Griffiths phase and magnetic field

- Tunable superconductivity
- Inhomogeneous superconductivity (meso scale)
- Multiple criticalities
- Evidence of a Griffiths phase
- **?** Role of the magnetic field

