High impedance (meta)-materials for quantum circuits

Nicolas Roch Neel Institute, Grenoble, France

Quantum Engineering Univ. Grenoble Alpes

Acknowledgments

Grenoble

Serge Florens

Nicolas Gheereart

Benjamin Sacépé

U. Witwatersrand Johannesburg

Izak Snyman

Denis Basko DANC laboratoire de physique et de modélisation des milieux condensés

Grenoble

Quantum circuits: harmonic oscillator

Flux in inductor $\phi(t) = \int_{-\infty}^{t} V(t')dt'$ $\langle \phi^2 \rangle = \frac{\hbar Z_0}{2} \coth\left(\frac{\beta\hbar\omega_0}{2}\right)$ Resonant frequency

$$\omega_0 = \sqrt{\frac{1}{LC}}$$

Impedance

$$Z_0 = \sqrt{\frac{L}{C}}$$

Charge on capacitor $Q(t) = \int_{-\infty}^{t} I(t')dt'$ $\langle Q^2 \rangle = \frac{\hbar}{2Z_0} \coth\left(\frac{\beta\hbar\omega_0}{2}\right)$

Quantum circuits: transmission line

Why high impedances?

e.g. superconductor close to the SIT

 $Z_c \sim h/(2e)^2 = 6.45 \ k\Omega$

R. Fazio & H. van der Zant, Physics Reports (2001)

e.g. dissipative quantum circuits

strong phase fluctuations across a single Josephson junction

 $\langle \varphi^2 \rangle \sim 2\pi$

A. Schmid, Phys. Rev. Lett. (1983)

Reaching high impedances Josephson junction meta-material

 $Z_c = \sqrt{L/C_g}$

Reaching high impedances Josephson junction meta-material

S. Corlevi et al 06' (Haviland's group)

See also:

N. Masluk et al 12', Bell et al 12', S. Butz et al. 13', C. Altimiras et al. 13'

JJ meta-material: Bridge Free Fabrication

Challenges faced: stitching errors, resist homogeneity, focus homogeneity, proximity effect....

JJ meta-material: Measuring

Fabry-Pérot

See also talks from:

F. Lévy-Bertrand M. Scheffler

1 µm

London penetration depth $\lambda_L = 14 \ \mu m$

 $Z_c \sim 8 \ k\Omega$

 $r_0 = 0.2 \ \mu m$

Why high impedances?

e.g. superconductor close to the SIT

 $Z_c \sim h/(2e)^2 = 6.45 \ k\Omega$

R. Fazio & H. van der Zant, Physics Reports (2001)

e.g. dissipative quantum circuits

strong phase fluctuations across a single Josephson junction

 $\langle \varphi^2 \rangle \sim 2\pi$

A. Schmid, Phys. Rev. Lett. (1983)

Dissipative quantum systems

Fig. 7. Caldeira-Leggett model of an admittance $Y(\omega)$.

Figure from

Devoret M. H. in "Quantum Fluctuations", S. Reynaud, E. Giacobino, J. Zinn-Justin, Eds. (Elsevier, Amsterdam, 1997) p. 351-385

Review

A. O. Caldeira & A. J. Leggett, Annals of Physics (1983)

U. Weiss, Quantum Dissipative Systems (4 ed.). WORLD SCIENTIFIC (2012)

Dissipative quantum systems

Broadening of the quantum levels

E. Turlot, et al., Phys. Rev. Lett. (1989)

Renormalisation of the Josephson energy

J. S. Penttilä, et al., Phys. Rev. Lett. (1999)

Dissipative quantum systems

Our plan: make use of cQED to measure the spectrum of the system AND its bath

See also:

P. Forn Díaz, et al., Nat. Phys. (2016)

R. Kuzmin, et al., arxiv 1809.10739


```
T = 20 \text{ mK} J. Puertas-Martinez et al., arxiv 1802.00633
```


Reaching the ultrastrong coupling regime

Finite-size chain equivalent to infinite one (if $N_{site} \gtrsim 2000$)

J. Puertas-Martinez et al., arxiv 1802.00633

Renormalisation of the Josephson energy ?

Renormalisation of the Josephson energy ?

Renormalisation of the Josephson energy?

 $\sqrt{E_s E_c} \sim 16 \text{ GHz}$

No phase fluctuation

$$\left\langle \varphi_T^2 \right\rangle = 0$$

Renormalisation of the Josephson energy?

Conclusion

High impedance Josephson junction metamaterials

Y. Krupko et al., Phys. Rev. B (2018)

0000

0000

Ŧ

Dissipative quantum circuits: monitoring the system AND its bath

> J. Puertas-Martinez et al., arxiv 1802.00633

Perspectives: linking quantum optics and many-body physics

Gheeraert et al., arXiv:1802.01665

Inelastic scattering of coherent states on a many-body system

Quantum Engineering Univ. Grenoble Alpes

Frequency [GHz]

Theory without free parameter

Non-linearity

