

Electrodynamics of granular aluminum from superconductor to insulator: observation of collective superconducting modes

Florence Levy-Bertrand

work done with

A. Monfardini's group

MagSup team members

A. Gomez

SIT 2018

Outline

• <u>Introduction</u> : collective superconducting modes

• Optical spectroscopy with superconducting resonator

- <u>Study of granular aluminum versus ρ:</u>
 - phase diagram SIT: Δ , T_c, J, E_c
 - various sub-gap optical absorptions for <u> $hv<2\Delta$ </u>

Superconducting collective modes

Superconductivity: condensate of electrons with a *unique* phase $|\Psi|e^{i heta}$

breaking the rotational U(1) symmetry.

	Ψ -fluctuation	θ-fluctuation
	"Higgs" mode	"Goldstone" mode
ato	$E=2\Delta$	E=0 or $\omega_{\text{plasma}}^* >> \Delta$

Both modes optically inactive in conventional superconductor

BUT...

*with Coulomb interaction

Below 2 Δ **: Higgs or Goldstone mode?**

Excess of optical absorption below 2Δ interpreted as:

U. S. Pracht and al, Phys. Rev. B 96, 094514 (2017).

U. S. Pracht and al, Phys. Rev. B 96, 094514 (2017).

L ~ kinetic inductance of the superfluid $L \sim 1/n_s$

SIT 2018

pure Al 20nm-thick

present a:InO_x: Tc ~ 2.8K, $2\Delta \sim 260$ GHz¹

 2Δ : STM and optical spectroscopy agreement

SKID : Sub-gap Kinetic Inductance Detector (17).

detection through δf for a <u>specific</u> $hv < 2\Delta$

• hv-selection = resonance mode (or any collective mode?)

• hv-absorbed -> superfluid current density J increases -> superfluid density n_s decreases -> kinetic inductance $L_k \sim 1/n_s$ increases -> resonance frequency shift

 $L(J) = L(0)[1 + J^2/J_*^2 + ..]^{1,2} \qquad J_* = 2/3^{3/2}J_c$

¹ see any textbook on superconductivity (de Gennes, Tinkham)
² L. Swenson et al, J. Appl. Physics 113, 104501 (2013)

low Jc is a priori more adapted for sub-gap detection

Tuna

Jacob C.

sonators

 π/L

a:InO:

Tunable sub-gap radiation detection with superconducting resonators O. Dupré et al, Supercond. Sci. Technol. 30, 045007 (2017).

- hv-selection = resonance mode (or any collective mode?)

 $L(J) = L(0)[1 + J^2/J_*^2 + ..]^{1,2} \qquad J_* = 2/3^{3/2}J_c$

¹ see any textbook on superconductivity (de Gennes, Tinkham)
² L. Swenson et al, J. Appl. Physics 113, 104501 (2013)

low Jc is a priori more adapted for sub-gap detection

~ ~ ~

 $K=n.2\pi/L$

Granular Aluminium: resistivity

Granular Aluminium: Tc dome shape

Granular Aluminium: optical spectroscopy with superconducting resonators

Granular Aluminium: optical spectroscopy with superconducting resonators

source = 300K black body Fourier-Transform spectrometry

Granular Aluminium: phase stiffness J = Josephson energy

$$J = \frac{\hbar}{4e^2} \frac{\pi \Delta}{R_{sq}} \longrightarrow J_{\Delta} \text{ from measurements}$$

 $J = \frac{\hbar^2}{4e^2 I_{\rm C}}$

Ш

• J_{Ls} from kinetic inductance Ls

Ls obtained by RF-simulation adjusting the actual resonance frequencies f=(LC)^{-1/2}

Granular Aluminium: Coulomb Ec

$$E_c = \frac{e^2}{4\pi\epsilon_0\epsilon_r d} \frac{s}{s+d/2}$$

d=3nm-6nm s=0.5nm $\epsilon_r = 8.5$ \downarrow $E_c \sim 100+/-50 \text{ K}$

Granular Aluminium: ω_p

Scaling of ω_p with Δ

17/20

Granular Aluminium

- sub-gap optical absorption in agreement with literature but now resolved features
- onset when $J \lesssim E_c$ suggest phase fluctuations
- literature explains 1 mode observation of 2 (or more?) modes
- N. Maleeva and al, Nat. Com 9, 3889 (2018) ω_p =saturation of 2D plasmon dispersion quantitative agreement but for multipeaks

•
$$\omega_G$$
 ? ...

Conclusion

- Sub-gap modes in (various) superconductors
- Origin(s) under debate
- Of interests for 3 communities:
 - astrophysics instrumentation (photon detection)
 - quantum engineering (high-L_K vs dissipation?)
 - fundamental studies

Conclusion

- Sub-gap modes in (various) superconductors
- Origin(s) under debate
- Of interests for 3 communities:
 - astrophysics instrumentation (photon detection)
 - quantum engineering (high-L_K vs dissipation?)
 - fundamental studies

THANK YOU

