Quantum meets classical phase transition: Low-T anomaly in disordered superconductors near B_{c2}

Benjamin Sacépé

Néel Institute, CNRS & Univ. Grenoble Alpes

Villard de Lans, October 8-12, 2018

Experiments

Johanna Seidemann Néel Institute

Fédéric Gay Néel Institute

Maoz Ovadia Weizmann Institute

Theory

Karen Michaeli *Weizmann Institut*e

MoGe samples

Kevin Davenport Univ. of Utah

Andrey Rogachev Univ. of Utah

Mikhail Feigel'man (And the cat) *Landau Institute*

+ Many fruitful discussions with Shahar's group

B-*T* phase diagram

(Very) dirty superconductors

Fisher, Fisher, Huse PRB (' 91) Blatter, et al. RMP ('94) Kwok, et al. Rep. Prog. Phys. ('16)

In/InO_x composite films (10 nm thick)

Hebard, Paalanen PRB ('84)

$a-Si_{1-x}Au_x$ films (100-200nm)

Furubayashi, Nishida, Yamagushi, Morigaki, Ishimot ('85)

B-doped diamond (bulk)

Bustarret et al. PRL ('04)

AgSnS₂ (bulk)

Y. Ando PRB ('13)

SUPERCONDUCTIVITY

Quantum Griffiths singularity of superconductor-metal transition in Ga thin films

Ying Xing,^{1*} Hui-Min Zhang,^{2*} Hai-Long Fu,^{1*} Haiwen Liu,^{1,4*} Yi Sun,¹ Jun-Ping Peng,² Fa Wang,^{1,4} Xi Lin,^{1,4}† Xu-Cun Ma,^{2,3,4}† Qi-Kun Xue,^{3,4} Jian Wang,^{1,4}† X. C. Xie^{1,4}

Science 350, 542 (2015)

Low-T anomaly of $B_{c2}(T)$

Tenhover et al. (* 81) Okuma et al. (*83) Hebard, Paalanen (*84) Graybeal, Beasley (*84) Furubayashi et al. (*85) Nordström et al. (* 93) Bustarret et al. (*04) Ren et al. (*13) Xing et al. (*15)

Mesoscopic fluctuations scenario

Spivak & Zhou, PRL ('95)

STM map of $\Delta(r)$

B.S. et al, PRL ('08)

Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

Zheng Han^{1,2}, Adrien Allain^{1,2}, Hadi Arjmandi-Tash^{1,2}, Konstantin Tikhonov^{3,4}, Mikhail Feigel'man^{3,5}, Benjamin Sacépé^{1,2} and Vincent Bouchiat^{1,2*}

Mesoscopic fluctuations scenario

Spivak & Zhou, PRL ('95)

Mesoscopic sample Bulk sample $\frac{1}{10^{10}}$

Predict exponential decrease of $\langle j_c \rangle \sim exp\left(-\frac{R_0}{L_H}-\frac{R_0}{L_T}\right)$

Mesoscopic fluctuations scenario

Galitski & Larkin, PRL ('01)

- *B ∧* : decrease of SC island size
- $T \searrow$: increase of SC proximity effect

Predict exponential increase of $B_{c2}(T)$ and exp. suppression of $j_c(B)$!

Critical current

Moderetely disordered amorphous indium oxide (InO)

- ➢ 30-60 nm thick
- \succ e-density : $n \sim 10^{21} cm^{-3}$
- > Disorder : $k_F l_e \sim 0.3 0.4$

Moderetely disordered amorphous indium oxide (InO)

Moderetely disordered amorphous indium oxide (InO)

Science 350, 542 (2015)

Linear *T*-dependence of $B_{c2}(T)$

B.S. et al. PRB ('15)

Critical current measurements

 $T \simeq 0.03 K$

Critical current measurements

Critical current measurements

 $T \simeq 0.03 K$

 $J_c(T \sim 0) \propto (B_{c2}(0) - B)^{\alpha} \qquad \alpha \simeq 1.5 - 1.6$

Mean-field depairing current ?

Near quantum transition:

Ginzburg-Landau

$$F = \alpha |\Delta(\mathbf{r})|^2 + \beta |\Delta(\mathbf{r})|^4 + \gamma \left| \left(-i \nabla - \frac{2e}{\hbar c} \mathbf{A}(\mathbf{r}) \right) \Delta(\mathbf{r}) \right|^2$$

 $j_c \propto \rho_s / \xi_{GL}$

From the free energy

From London equation

$$j = -c \frac{\partial F}{\partial A} \qquad j = -4\rho_s \frac{e^2 A}{\hbar^2 c}$$
$$j = \gamma \frac{2e}{\hbar} |\Delta(\mathbf{r})|^2 A$$
$$\rho_s = \frac{\hbar c}{2e} \gamma |\Delta(\mathbf{r})|^2$$

Ginzburg-Landau

$$F = \alpha |\Delta(\mathbf{r})|^{2} + \beta |\Delta(\mathbf{r})|^{4} + \gamma \left| \left(-i\nabla - \frac{2e}{\hbar c} A(\mathbf{r}) \right) \Delta(\mathbf{r}) \right|^{2}$$
$$|\Delta|^{2} = \frac{\alpha}{2\beta}$$
$$\alpha = \nu \left[\ln \frac{T}{T_{c0}} + \psi \left(\frac{1}{2} + \frac{eDB}{2\pi cT} \right) - \psi \left(\frac{1}{2} \right) \right]$$
$$\alpha = \xrightarrow[T \to 0]{} \nu \left(1 - \frac{B}{B_{c}} \right)$$

$$\rho_s = \frac{\hbar c}{2e} \gamma |\Delta(\mathbf{r})|^2 = \frac{12}{\pi} \rho_{s0} \left(1 - \frac{B}{B_{c2}(0)} \right)$$

Critical current

 $j_c \propto \rho_s / \xi_{GL}$

Superfluid stiffness

Coherence length

$$\rho_s \propto |\Delta|^2 \sim \left(1 - \frac{B}{B_{c2}(0)}\right)$$

 $\xi_{GL} \sim \frac{\nu_F}{\Delta}$

$$J_c \propto \frac{\rho_s}{\xi_{GL}} \sim \left(1 - \frac{B}{B_{c2}(0)}\right)^{3/2}$$

Mean-field scaling of the critical current

$$J_c \propto \frac{\rho_s}{\xi_{GL}} \sim \left(1 - \frac{B}{B_{c2}(0)}\right)^{3/2}$$

Low- \overline{T} anomaly of B_{c2}

For bulk crystal $T_c(B)$ is given by :

$$\delta \rho_s(B,T_c) = \epsilon \rho_s(B,0)$$

Similar to the Lindemann criterion for the melting of bulk cristal

Low-*T* thermal fluctuations of the vortex glass

Kwok et al. Rep. Prog. Phys. ('16)

Correction to the superfluid density :

$$\delta \rho_s(T,B) = -C \frac{\hbar \sigma_n}{e^2} \frac{T^2}{3\pi \rho_s(B)a_0}$$

Valid for $T \ll T_c$ and $\delta \rho_s(T,B) \ll \rho_s(0,B)$

For details see Feigel'man talk

Low-*T* thermal fluctuations of the vortex glass

Kwok et al. Rep. Prog. Phys. ('16)

Correction to the superfluid density :

$$\delta \rho_s(T,B) = -C \frac{\hbar \sigma_n}{e^2} \frac{T^2}{3\pi \rho_s(B)a_0}$$

Valid for $T \ll T_c$ and $\delta \rho_s(T, B) \ll \rho_s(0, B)$

correction to critical current :

$$\delta j_c^{GL}(T,B) \propto \frac{\delta \rho_s(T,B)}{\xi_{GL}} \propto \frac{T^2}{\sqrt{B_{c2}(0)-B}}$$

Low-*T* thermal fluctuations of the vortex glass

Correction to the superfluid density :

$$\delta\rho_s(T,B) = -C \frac{\hbar\sigma_n}{e^2} \frac{T^2}{3\pi\rho_s(B)a_0}$$

Valid for $T \ll T_c$ and $\delta \rho_s(T, B) \ll \rho_s(0, B)$

correction to critical current :

$$\delta j_c^{GL}(T,B) \propto \frac{\delta \rho_s(T,B)}{\xi_{GL}} \propto \frac{T^2}{\sqrt{B_{c2}(0)-B}}$$

Low-*T* anomaly of B_{c2}

Bulk crystal : $T_c(B)$ is given by

$$\delta \rho_s(B,T_c) = \epsilon \rho_s(B,0)$$

Similar to the Lindemann criterion for the melting of bulk cristal

$$\delta \rho_s(T,B) = -C \frac{\hbar \sigma_n}{e^2} \frac{T^2}{3\pi \rho_s(B)a_0} = \epsilon \rho_s(B)$$

$$\rho_s(B) \propto \left(1 - \frac{B_{c2}(T)}{B_{c2}(0)}\right) \propto T$$

☑ **Thin films :** Generalized BKT transtion

n
$$\rho_s(B, T_{BKT}) = \frac{\chi}{d} T_{BKT}$$

 $\chi^{-1} \sim 1.5 - 2$

T. Schneider, and A. Schmidt ('92)

Linear *T*-dependence of $B_{c2}(T)$

$$\left. \frac{dB_{c2}}{dT} \right|_{T \to T_c} \propto -\frac{1}{D}$$

$$B_{c2}(0) = \frac{\phi_0}{2\pi\xi^2} \propto \frac{1}{D}$$

B.S. et al. PRB ('15)

$$b = -\frac{B_{c2}(T)}{\left(T_c \frac{dB_{c2}}{dT}\Big|_{T \to T_c}\right)}$$

versus T/T_c

WHH ('66)

$$J_c \propto \frac{\rho_s}{\xi_{GL}}$$

E. Zeldov ('17)

Weak vs strong pinning

WEAK pinning

Pinning collapses beyond F_c

Kwok et al. Rep. Prog. Phys. ('16)

Buchacek, Willa, Geshkenbein, Blatter (2018)

Weak vs strong pinning

Strong pinning !

Strnad, Hempstead, Kim ('64-'65) Xiao, Andrei, Paltiel, Zeldov, Shuk, Greenblatt ('02)

De-pinning transition

B = 11.25 T

✓ Jump of several orders of dV/dI:

collective de-pinning !?

De-pinning transition

B = 11.25 T

☑ Exponential increase of dV/dI $R(T, B, j) = R_0 e^{-U(B, j)/T}$ $U(B, j) = U(B) \left(1 - \frac{j}{j_1}\right)$

 \square Large resistance (~ kOhms / \square)

☑ Signatures of strong pinning in IV's

☑ Collective depinning

 \square Mean-field scaling $j_c \sim |B - B_{c2}|^{3/2}$

 \checkmark Mean-field scaling $j_c \sim |B - B_{c2}|^{3/2}$

 \square Strong spatial fluctuations of $\Delta(r)$

InOx films (B=0)

B. Sacépé, et al., Nat. Phys. ('11)

(a) (b) (c) 40 kOe 60 kOe 75 kOe G(V=2.2 mV)(nS) G(V=2.2 mV)(nS) G(V=2.2 mV)(nS) (mu) K (mu)k (IIII) 100 x(nm) x(nm) x(nm)

NbN films

P. Raychaudhuri PRB ('17)

 \checkmark Mean-field scaling $j_c \sim |B - B_{c2}|^{3/2}$

 \square Strong spatial fluctuations of $\Delta(r)$

☑ Similar to columnar defects

Mkrtchyan & Schmidt JETP ('72)

$$j_c^{de-pinning} = \Gamma j_c^{GL} \qquad (\Gamma < 1)$$

$$J_c^{GL}(B) = J_c^{GL}(0) \left(1 - \frac{B}{B_{c2}(0)}\right)^{3/2}$$

$$J_c^{GL}(0) = \frac{4e\rho_{s0}}{3\sqrt{3}\pi\hbar\xi_{GL}}$$

 ρ_{s0} from Yazdani PRL ('13)

 $\xi_{GL} \sim 5 \text{ nm from B.S. PRB}$ ('15)

$$J_c^{GL}(B) = J_c^{GL}(0) \left(1 - \frac{B}{B_{c2}(0)}\right)^{3/2}$$

 $J_{c}^{GL}(0) \sim 10^{4} A/cm^{2}$

$$J_c(0) \approx (2.5 - 4) \cdot 10^3 A / cm^{-2}$$

$$J_c^{de-pinning} = \Gamma J_c^{GL} \qquad \Gamma^{-1} \sim 2 - 4$$

Conclusion

> Mean-field scaling
$$J_c \sim |B - B_{c2}|^{3/2}$$

> $J_c^{de-pinning} = \Gamma J_c^{GL}$

$$\rho_{s} \sim \left(1 - \frac{B}{B_{c2}(0)}\right)$$

$$B$$

$$I - \frac{B_{c2}(T)}{B_{c2}(0)} \sim T$$

$$T$$

Sacépé, Seidemann, Gay, Davenport, Rogachev, Ovadia, Michaeli, Feigel'man, *Nature Physics,* today

Universality

MoGe film : 3 nm thick $R_{sq} = 700 \Omega$ $T_c = 4 K$

Thank you!