Signatures of quantum critical behavior in disordered TiN thin films (and wires)

K. Kronfeldner, I. Schneider T. Huber *Christoph Strunk*

University of Regensburg, Germany

Tatyana I. Baturina

Institute of Semiconductor Physics, Novosibirsk, Russia

arXiv:1806.01335

Superconductor-insulator transition (SIT) in TiN films

Disorder-driven SIT (D-SIT) (B = 0) Field-driven SIT (B-SIT) (B > 0)

T. I. Baturina, C.S. et al., Phys. Rev. Lett. 2007

T. I. Baturina et al., Appl. Phys. Lett. 2013

B-induced SIT as a quantum phase transition

- M. Fisher: apply dimensional analysis to B-SIT
- Duality between superconducting (S) and insulating (I) states:
 - → S: Cooper-pair condensate (localized vortices)
 - → I: Bose-fluid of unbound vortices (localized Cooper-pairs)
- Around B_c the resistance should satisfy the scaling form:

 $R = R_c \cdot f[(B - B_c)/T^{1/z_v}]$

with a dimensionless scaling function f, and the scaling exponent $z \nu$

(v: correlation length exponent, z: dynamical exponent)

Search for crossing points in the magnetoresistance isotherms

M. P. A. Fisher, PRL 64, 587 and 65, 7 (1990)

Crossing points in the magnetoresistance isotherms

Amorphous MoGe

A. Yazdani and A. Kapitulnik Phys. Rev. Lett. 74, 3037 (1994)

Amorphous indium oxide

JETP 71, 473 (2000)

Collapse of the R(B) isotherms in scaling plots with adjusted zv

very different strength of insulating behavior

no universal critical resistance

Outline:

- crossing points in the magnetoresistance of TiN thin films
- critical behavior of the B-induced SIT near the disorder-induced SIT
- self-induced granularity
- Josephson-like *superconducting* and Bloch-like *insulating* behavior in **narrow nanowires**

Film characteristics

Sample D03_S

- ultrathin TiN films with thickness d = 3.6 nm atomic layer deposition at 400 °C
- polycrystalline structure

 $3.5 \text{ k}\Omega < \text{R}_{_{\Box}}^{300 \text{ K}} < 4.5 \text{ k}\Omega$ tuned by heating in air

properties of untreated film: $R_{a}^{300 \text{ K}} = 2.52 \text{ k}\Omega$ $T_{c}^{-} = 1.29 \text{ K}$ $\xi_{d}(0) = 8.9 \text{ nm}$ $D = 0.34 \text{ cm}^{2}/\text{s}$ $n = 1.5 \cdot 10^{22} \text{ cm}^{-3}$

Magnetoresistance in critically disordered TiN films

Magnetoresistance in critically disordered TiN films

we find three crossing (*isosbestic*) points, where R(B)s intersect!

Crossing points yield plateaus in the R(T) curves

Crossing points yield plateaus in the R(T) curves

three distinct crossing point in R(B) isotherms - scaling what about quantum phase transitions?

Scaling analysis

zv = 1.2 consistent with theoretical prediction of $zv \ge 1$ for a SIT in a disordered system [M. P. A. Fisher, PRL **65**, 7 (1990)]

Where is the SIT?

how to identify universal behavior?

see talk J. Lesueur

controlled oxidation of TiN films in air

controlled oxidation of TiN films in air

Evolution of SIT separatrix

Evolution of scaling parameters near SIT

- only MT crossing point produces universal values of R_c and zv !
- B_c values converge towards zero at critical resistance for D-SIT

intermediate plateau in R(T) may correspond to Fisher scenario

high T regime: superconducting fluctuations above B_{c2}

no quantum phase transition required to understand this particular isosbestic point

low T regime: signatures of mesoscopic inhomogeneities

Insulating and superconducting features **coexist** for $0.2 \text{ T} \le \text{B} < \text{B}_{cl} = 0.36 \text{ T}$

formation of superconducting filaments on a mesoscopic scale

Intermediate conclusion

- Several crossing points in magnetoresistance possible
- Despite very different origins, scaling often possible
- Strong similarities to phenomenology in InO_X
- More direct experimental information (besides zv) is desirable to understand specifics of the different phases:
 - mechanisms of conduction and insulation
 - is there a 'vortex Bose condensate' ?
 - use 2nd control parameter to check for universality!
 - features of the 'normal metal' at the critical point?

emergent electronic granularity in NbN

graphy and electronic granularity

electronic granularity

Numerical calculation of $\Delta(r)$ in presence of strong disorder

Pairing amplitude in real space the for a specific disorder configuration on a 96x96 lattice:

simplified self-consistency scheme

following Feigel'man, loffe, Kravtsov, Cuevas, Ann. Phys. 325, 1368 (2010)

fully self-consistent scheme

(see also Bouadim et al., Nat. Phys. 2011)

(same disorder and parameter configuration, phase fluctuations neglected)

calculations by M. Stosiek, F. Evers

superconductor-insulator transition in TiN thin films

V. M. Vinokur et al., Nature 452, 613-615 (2008)

model system: Josephson junction arrays

Quantum phase transitions and vortex dynamics in superconducting networks

Rosario Fazio^{a,b,*}, Herre van der Zant^c

Phys. Rep. 355, 4 (2001) 235-334

two competing energy scales: Josephson coupling energy E_{J} vs. charging energy E_{c}

electronic fragmentation in TiN films \rightarrow self organized superconducting islands

random Josephson junction array?

TiN: Sacépé et al., Phys. Rev. Lett. **101**, 157006 (2008) NbN: Patel et al., Phys. Rev. B **80**, 012504 (2009), Carbillet et al., 93, 144509 (2016) InO: Sacépé et al., Nat. Phys. **7**, 239 (2011)

Questions:

1. Is the superconductor-insulator transition in TiN thin films an effect of

electronic fragmentation?

2. Can we find signatures of electronic fragmentation in submicron samples?

Sample layout and measurement setup

width dependent saturation behavior in R(T)

- width dependent temperature behavior
- drop to zero resistance for wide wires
- saturation behavior for narrow wires
- suppression of global phase coherence
- evidence for quantum phase slips

see also Lau et al., PRL **87**, 217003 (2001) Arutyunov et al., Phys. Rep. **464**, 1 (2008) Bollinger et al., PRL **101**, 227003 (2008)

width dependent saturation behavior in R(T)

- width dependent temperature behavior
- drop to zero resistance for wide samples
- saturation behavior for small samples
- suppression of global phase coherence
- evidence for quantum phase slips

100000 I-type 10000 N2-type 1000 100 R, Ohm 10 N1-type Oualitative classification of superconducting wires 0.1 S-type 0.01 2 4 3 0 5 T.K

A. Bezryadin et al., J. Phys.: Condens. Matter 20 (2008) 043202

see also Lau et al., PRL **87**, 217003 (2001) Arutyunov et al., Phys. Rep. **464**, 1 (2008) Bollinger et al., PRL **101**, 227003 (2008) template fabricated α -MoGe nanowires

I(V) characteristics at B=0

consistent with phase slip scenario
I(V)s very similar to that of small Josephson junctions

I(V) characteristics, behavior of small Josephson junctions

THE JOSEPHSON EFFECT IN SMALL TUNNEL CONTACTS

Yu. M. IVANCHENKO and L. A. ZIL'BERMAN

Sov. Phys. JETP 28, 1272 (1969)

pure Ohmic damping, phase fluctuations:

$$I(V_B) = I_0 \operatorname{Im} \left[\frac{I_{1-2i\beta eV_B/\hbar R_B}(\beta E_J)}{I_{-2i\beta eV_B/\hbar R_B}(\beta E_J)} \right]$$
$$V_B = V + R_B I, \ \beta = \frac{1}{k_B T}$$

see also Steinbach et al., Phys. Rev. Lett. 87, 13 (2001)

fit parameters: $I_0 = I_0(T), T = T_{eff}(T)$

model describes diffusive motion resulting from thermal noise in the ohmic environment of the junction

R(T) in perpendicular magnetic field for wider samples

- saturating *R* at low T and *B*
- crossover to a weakly localized regime at high B
- no formation of highly insulating states

Cooper-pair insulator and superinsulator do not come from local conduction properties of the material, but require certain minimal size

evolution of R(T) in magnetic field

- ↔ reentrant insulating behavior: understandable in terms of a magnetic field tuned E_J/E_C
- ✤ spontaneously formed random Josephson junction array? → compare to artificial JJ arrays

very similar behavior to that observed for one-dimensional Josephson junction arrays

charge-phase duality

Coulomb Blockade of Cooper pair Tunneling

Φ

Josephson Effect

evolution of R(T) in magnetic field

same film, different sample:

magnetic field induced superconductor-insulator transition

low T bias resistors 2 x 50 k $\!\Omega$

characteristics of the insulating state

Phase-Charge Duality of a Josephson Junction in a Fluctuating Electromagnetic Environment

S. Corlevi,¹ W. Guichard,^{1,2} F. W. J. Hekking,² and D. B. Haviland¹

Phys. Rev. Lett. 97, 096802 (2006)

very similar behavior to that observed for a single Josephson junction in a high impedance environment

characteristics of the insulating state

subtract voltage in 'normal' state:

IV-curves can be described by *dual* Ivanchenko-Zilberman-model

